ABDK
CONSULTING

SMART CONTRACT
AUDIT

Solidity and Rust

abdk.consulting

SMART CONTRACT AND CIRCUIT AUDIT
CONCLUSION

by Mikhail Vladimirov and Dmitry Khovratovich
29th June 2021

We've been asked to review ZkSync smart contracts related to the NFT functionality. We
found only a few issues.

N \oderate
N \inor

Findings

CVF-1 Minor Readability Opened
CVF-2 Minor Readability Opened
CVF-3 Minor Readability Opened
CVF-4 Minor Bad naming Opened
CVF-5 Minor Suboptimal Opened
CVF-6 Minor Readability Opened
CVE-7 Minor Bad naming Opened
CVF-8 Minor Bad datatype Opened
CVF-9 Minor Suboptimal Opened
CVF-10 Moderate Flaw Opened
CVF-11 Minor Suboptimal Opened
CVF-12 Minor Suboptimal Opened
CVF-13 Minor Suboptimal Opened
CVF-14 Minor Unclear behavior Opened
CVF-15 Minor Overflow/Underflow Opened
CVF-16 Minor Suboptimal Opened
CVF-17 Minor Suboptimal Opened
CVF-18 Minor Suboptimal Opened
CVF-19 Minor Bad datatype Opened
CVF-20 Minor Suboptimal Opened
CVF-21 Minor Unclear behavior Opened
CVF-22 Minor Suboptimal Opened
CVF-23 Minor Readability Opened
CVF-24 Minor Bad datatype Opened
CVF-25 Minor Unclear behavior Opened
CVF-26 Minor Suboptimal Opened

CVF-27 Minor Suboptimal Opened

CVF-28 Minor Suboptimal Opened
CVF-29 Minor Suboptimal Opened
CVF-30 Minor Suboptimal Opened
CVF-31 Minor Bad naming Opened
CVF-32 Minor Flaw Opened
CVF-33 Minor Unclear behavior Opened
CVF-34 Moderate Flaw Opened
CVF-35 Minor Bad datatype Opened

CVF-36 Minor Suboptimal Opened

ZkSync O

Review ABDK

Contents

1 Document properties 6

2 Introduction 7
2.1 About ABDK 7
2.2 Disclaimer 7
2.3 Methodology 8

3 Detailed Results 9
3.1 CVE-1 . 9
3.2 CVE-2 . 10
3.3 CVF-3 11
3.4 CVF-4 . . 12
3.5 CVE-b o 12
3.6 CVE-6 . . . 12
3.7 CVE-T . 13
3.8 CVF-8 . . 13
3.9 CVF-9 . . 13
3.10 CVF-10 13
3.11 CVE-11 . 14
3.12 CVE-12 14
3.13 CVF-13 . 14
3.14 CVF-14 15
3.15 CVF-15 15
3.16 CVF-16 15
3.17 CVE-17 . o 16
3.18 CVF-18 16
3.19 CVF-19 . . 16
3.20 CVE-20 . . . 17
3.21 CVE-21 . 17
3.22 CVE-22 17
3.23 CVE-23 . . 18
3.24 CVE-24 . . . 18
3.25 CVE-25 . 18
3.26 CVF-26 19
3.27 CVE-27 . 19
3.28 CVF-28 . . . 19
3.20 CVF-29 . . 20
3.30 CVF-30 . . 20
3.31 CVE-31 . . 20
3.32 CVE-32 . 20
3.33 CVF-33 . . 21
3.34 CVE-34 . . 21
3.35 CVF-35 . 21
3.36 CVF-36 22

ZkSync
Review ABDK

1 Document properties

Version
0.1 June 28, 2021 D. Khovratovich Initial Draft
0.2 June 28, 2021 D. Khovratovich Minor revision
1.0 June 29, 2021 D. Khovratovich Release
Contact

D. Khovratovich

khovratovich@gmail.com

ZkSync
Review ABDK

2 Introduction

The following document provides the result of the audit performed by ABDK Consulting at
the customer request. The audit goal is a general review of the smart contracts structure,
critical/major bugs detection and issuing the general recommendations.

This is our fifth audit of the ZkSync project, the first was made in spring 2020. In this
audit we review Solidity smart contracts in the following state.

e Release contract5.1:

witness/utils.rs;

— circuit.rs;

— utils.rs;

— AdditionalZkSync.sol;
— Config.sol;

— DeployFactory.sol;

— Events.sol;

— Governance.sol;

— Operations.sol;

— RegenesisMultisig.sol;
— Storage.sol;

— TokenGovernance.sol;
— ZkSync.sol;

— ZkSyncNFTFactory.sol.

2.1 About ABDK

ABDK Consulting, established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-authored
some widely known blockchain primitives like Poseidon hash function. The ABDK Audit
Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has conducted over 40 audits of
blockchain projects in Solidity, Rust, Circom, C++, JavaScript, and other languages.

2.2 Disclaimer

Note that the performed audit represents current best practices and smart contract standards
which are relevant at the date of publication. After fixing the indicated issues the smart
contracts should be re-audited.

https://github.com/matter-labs/zksync-dev/releases/tag/contract5.1
https://abdk.consulting
https://poseidon-hash.info

ZkSync
Review ABDK

2.3 Methodology

The methodology is not a strict formal procedure, but rather a collection of methods and
tactics that combined differently and tuned for every particular project, depending on the
project structure and and used technologies, as well as on what the client is expecting from
the audit. In current audit we use:

e General Code Assessment. The code is reviewed for clarity, consistency, style, and
for whether it follows code best practices applicable to the particular programming lan-
guage used. We check indentation, naming convention, commented code blocks, code
duplication, confusing names, confusing, irrelevant, or missing comments etc. At this
phase we also understand overall code structure.

e Entity Usage Analysis. Usages of various entities defined in the code are analysed.
This includes both: internal usages from other parts of the code as well as potential
external usages. We check that entities are defined in proper places and that their
visibility scopes and access levels are relevant. At this phase we understand overall
system architecture and how different parts of the code are related to each other.

e Access Control Analysis. For those entities, that could be accessed externally, access
control measures are analysed. We check that access control is relevant and is done
properly. At this phase we understand user roles and permissions, as well as what assets
the system ought to protect.

e Code Logic Analysis. The code logic of particular functions is analysed for correctness
and efficiency. We check that code actually does what it is supposed to do, that
algorithms are optimal and correct, and that proper data types are used. We also check
that external libraries used in the code are up to date and relevant to the tasks they solve
in the code. At this phase we also understand data structures used and the purposes
they are used for.

ZkSync
Review ABDK

3 Detailed Results

3.1 CVF-1
e Severity Minor e Status Opened
e Category Readability e Source Operations.sol

Recommendation A hexadecimal literal would be easier to read.

49 uint256 internal constant LEGACY MAX TOKEN = 65535; // 2716 — 1

102

110

182

190

ZkSync

Review ABDK
3.2 CVF-2

e Severity Minor e Status Opened

e Category Readability e Source Operations.sol

Recommendation This still could be written as a single logical expres-
sion: 'return Utils.hashBytesToBytes20(writeDepositPubdataForPriorityQueue(op))
== hashedPubdata I op.tokenld <= LEGACY MAX_ TOKEN &&
Utils.hashBytes ToBytes20(writeLegacyDepositPubdataForPriorityQueue(op)) == hashed-
Pubdata;’'.

if (Utils.hashBytesToBytes20(writeDepositPubdataForPriorityQueue
< (op)) = hashedPubdata) {
return true;
} oelse if (
op.tokenld <= LEGACY MAX TOKEN &&
Utils.hashBytesToBytes20(
< writeLegacyDepositPubdataForPriorityQueue(op)) =
> hashedPubdata

) {
return true;

1 else {

return false:

if (Utils.hashBytesToBytes20(
< writeFullExitPubdataForPriorityQueue(op)) = hashedPubdata

=) A

return true,
1 else if (
op.tokenld <= LEGACY MAX_ TOKEN &&
Utils.hashBytesToBytes20 (
< writeLegacyFullExitPubdataForPriorityQueue(op)) =
< hashedPubdata

) |
return true;

1 else {

return false:

10

1358

1381

2003

2018

3002

3017

3976

4016

4288

ZkSync

Review ABDK
3.3 CVF-3

e Severity Minor e Status Opened

e Category Readability e Source circuit.rs

Description Here the first 16 bits of token ID are dropped assuming that either these bits are
zero, or the token is non-fungible, however it is not obvious that at least one of this conditions
is always satisfied.

Recommendation Consider calculating the inverted 'multi " or of the dropped bits and using
this value instead of the 'is fungible token’ flag when deciding whether an old signature is
valid or not.

serialized tx bits oldl.extend from slice(&cur.token.get bits be
— ()[16..32]);

serialized tx bits old2.extend from slice(&cur.token.get bits be
— ()[16..32]);

serialized tx bits_oldl.extend from slice(&cur.token.get bits be
— ()[16..32]);

serialized tx bits old2.extend from slice(&cur.token.get bits be
— ()[16..32]);

serialized tx bits oldl.extend from slice(&cur.token.get bits be
— ()[16..32]);

serialized tx bits old2.extend from slice(&cur.token.get bits be
— ()[16..32]);

serialized tx bits oldl.extend from slice(&cur.token.get bits be
— ()[16..32]);

serialized tx bits old2.extend from slice(&cur.token.get bits be
— ()[16..32]);

serialized tx bits old.extend from slice(&cur.token.get bits be
— ()[16..32]);

11

5141

588

605

616

637

648

480

ZkSync

Review ABDK
3.4 CVF-4

e Severity Minor e Status Opened

e Category Bad naming e Source circuit.rs

Description The name is confusing, as usually "reversed" bits are the same bits but in the
reversed order, while “inverted” bits are what this function actually calculates.
Recommendation Consider renaming.

reversed tx type bits be(tx type: u8) —> Vec<Boolean> {
3.5 CVF-5

e Severity Minor e Status Opened

e Category Suboptimal e Source utils.rs

Recommendation These variables are redundant, as their values are used only once.

let tx_ bytes = get bytes!(transfer op);

let tx bytes = get bytes!(transfer op);

let tx bytes = get bytes!(change pubkey op);

let tx bytes = get bytes!(withdraw op);

let tx bytes = get bytes!(forced exit op);

3.6 CVF-6
e Severity Minor e Status Opened
e Category Readability e Source utils.rs

Recommendation This expression could be simplified as: '(a « i) & 0x80u8 != 0 or as a &
(0x80u8 » i) 1= 10"

if (a & (lus << (7 — i))) =0 {

17

17

209

136

ZkSync

Review ABDK
3.7 CVF-7

e Severity Minor e Status Opened

e Category Bad naming e Source Governance.sol

Recommendation Consider renaming to "NewDefaultNFTFactory”.

Listing 7:

event SetDefaultNFTFactory(address indexed factory);

3.8 CVF-8
e Severity Minor e Status Opened
e Category Bad datatype e Source Governance.sol

Recommendation The parameter should probably have some more specific type.

Listing 8:

event SetDefaultNFTFactory(address indexed factory);

3.9 CVF-9
e Severity Minor e Status Opened
e Category Suboptimal e Source Governance.sol

Recommendation The first cast is redundant.

Listing O:

require (address(factory) != address(0), "mbl"); // Factory
— should be non zero

3.10 CVF-10
e Severity Moderate e Status Opened
e Category Flaw e Source AdditionalZkSync.sol

Recommendation The approval of a notice period cut is not bound to a particular upgrade.
This function should only be callable when an upgrade is already scheduled.

Listing 10:

function cutUpgradeNoticePeriod () external {

13

142

146

152

157

148

154

160

ZkSync

Review ABDK
3.11 CVF-11

e Severity Minor e Status Opened

e Category Suboptimal e Source AdditionalZkSync.sol

Recommendation A bit mask would be more efficient than a mapping.

require(securityCouncilApproves[id] = false);
securityCouncilApproves[id] = true;
3.12 CVF-12

e Severity Minor e Status Opened

e Category Suboptimal e Source AdditionalZkSync.sol

Description If any thresholds coincide, then the notice period will be written twice to the
storage and an event will be logged twice as well.
Recommendation Consider handling this case explicitly.

Listing 12:

if (numberOfApprovalsFromSecurityCouncil =
< SECURITY_COUNCIL_2 WEEKS THRESHOLD) {

if (numberOfApprovalsFromSecurityCouncil =
< SECURITY COUNCIL 1 WEEK THRESHOLD) {

3.13 CVF-13
e Severity Minor e Status Opened
e Category Suboptimal e Source AdditionalZkSync.sol

Description Writing approved upgrade period is waste of gas.
Recommendation Just calculate it when needed.

Listing 13:

approvedUpgradeNoticePeriod = 2 weeks;
approvedUpgradeNoticePeriod = 1 weeks;

approvedUpgradeNoticePeriod = 3 days;

184

198

11

16

21

ZkSync

Review ABDK
3.14 CVF-14

e Severity Minor e Status Opened

e Category Unclear behavior e Source AdditionalZkSync.sol

Description The value of the ' pubkeyHash' argument is ignored here, so one could set
timer with one value and then, after the reset timelock time passed, actually set another
value. Probably, not an issue.

authFactsResetTimer[msg.sender|[nonce] = block.timestamp;
3.15 CVF-15

e Severity Minor e Status Opened

e Category Overflow/Underflow e Source AdditionalZkSync.sol

Description Overflow is possible (in theory) when converting to uint32.
Recommendation Consider calculating the minimum of 256-bit numbers and only then con-
vert to uint32.

Listing 15:

uint32 blocksToRevert = Utils.minU32(uint32(_blocksToRevert.
— length), blocksCommitted — totalBlocksExecuted);

3.16 CVF-16
e Severity Minor e Status Opened
e Category Suboptimal e Source ZkSyncNFTFactory.sol

Recommendation In Solidity, types smaller than 256 bits are not more efficient, than 256-bit
types. Probably, just using uint256 here would be fine.
Listing 16:

uint8 constant ADDRESS FOOTPRINT OFFSET = O0;
uint8 constant ADDRESS SIZE BITS = 160;

uint8 constant CREATOR ID FOOTPRINT OFFSET =
— ADDRESS FOOTPRINT _OFFSET + ADDRESS SIZE BITS;
uint8 constant CREATOR ID SIZE BITS = 32;

uint8 constant SERIAL ID_FOOTPRINT OFFSET =
< CREATOR_ID_FOOTPRINT OFFSET + CREATOR_ID_SIZE_BITS;
uint8 constant SERIAL ID SIZE BITS = 32;

95

109

99

113

149

178

135

ZkSync

Review ABDK
3.17 CVF-17

e Severity Minor e Status Opened

e Category Suboptimal e Source ZkSync.sol

Description These two functions do exactly the same.
Recommendation Consider extracting common code into a utility function.

Listing 17:

function upgradeCanceled() external override {

function upgradeFinishes() external override {

3.18 CVF-18

e Severity Minor e Status Opened

e Category Suboptimal e Source ZkSync.sol

Description These events are emitted even if the notice period didn't actually change.

Listing 18:

emit NoticePeriodChange(approvedUpgradeNoticePeriod

emit NoticePeriodChange(approvedUpgradeNoticePeriod

()
emit NoticePeriodChange(approvedUpgradeNoticePeriod);

()

()

emit NoticePeriodChange(approvedUpgradeNoticePeriod

3.19 CVF-19

e Severity Minor e Status Opened

e Category Bad datatype e Source ZkSync.sol

Recommendation The types of the variables should be more specific: (Governance gov-
ernanceAddress, Verifier _ verifierAddress, AdditionalZKSync _ additionalZkSync, bytes32
__genesisStateHash) = abi.decode(initializationParameters, (Governance, Verifier, Addition-
alZKSync, bytes32));

Listing 19:

(address _governanceAddress, address _verifierAddress, address
< _additionalZkSync, bytes32 genesisStateHash) =
abi.decode(initializationParameters , (address, address,
<~ address, bytes32));

ZkSync

Review ABDK
3.20 CVF-20

e Severity Minor e Status Opened

e Category Suboptimal e Source ZkSync.sol

Recommendation This type conversion is redundant, just change the type of the ' addi-
tionalZkSync' variable.

Listing 20:
141 additionalZkSync = AdditionalZkSync(additionalZkSync);

3.21 CVF-21
e Severity Minor e Status Opened
e Category Unclear behavior e Source ZkSync.sol

Description Why the cast to an address is necessary here? What is the value of the macro?
Listing 21:

175 additionalZkSync = AdditionalZkSync(address($%(
< NEW_ADDITIONAL ZKSYNC ADDRESS))) ;

3.22 CVF-22
e Severity Minor e Status Opened
e Category Suboptimal e Source ZkSync.sol

Recommendation It is possible to just delegate all the non-processed invocation, but imple-
menting a fallback function.

Listing 22:

181 function cutUpgradeNoticePeriod() external {

215 function cancelOutstandingDepositsForExodusMode (uint64 n, bytes
< [] memory _depositsPubdata) external {

511

516

1024

91

ZkSync

Review ABDK
3.23 CVF-23

e Severity Minor e Status Opened

e Category Readability e Source ZkSync.sol

Recommendation It is not obvious form the code, that op.tokenld <=
MAX FUNGIBLE TOKEN ID guarantees that uintl6(op.tokenld) wouldn't overflow.
Safe cast would be more clear.

Listing 23:

require (op.tokenld <= MAX_ FUNGIBLE TOKEN ID, "mf1");
withdrawOrStore(uintl6 (op.tokenld), op.owner, op.amount);
require (op.tokenld <= MAX FUNGIBLE TOKEN ID, "mf2");
withdrawOrStore (uintl6 (op.tokenld), op.target, op.amount);
3.24 CVF-24
e Severity Minor e Status Opened
e Category Bad datatype e Source ZkSync.sol

Recommendation This variable should have type “AdditionalZkSync",

Listing 24:
address target = address(additionalZkSync);

3.25 CVF-25
e Severity Minor e Status Opened
e Category Unclear behavior e Source TokenGovernance.sol

Description Only the new listing fee token is logged, but not the new listing fee.
Recommendation Consider either adding a listing fee parameter to this event or emit another
'ListingFeeUpdate’ event.

Listing 25:
emit ListingFeeTokenUpdate(newlistingFeeToken);

91

100

119

128

178

179

ZkSync

Review ABDK
3.26 CVF-26

e Severity Minor e Status Opened

e Category Suboptimal e Source TokenGovernance.sol

Description This event is emitted even if nothing were actually changed.

Listing 26:

emit ListingFeeTokenUpdate(newlListingFeeToken);
emit ListingFeeUpdate(newlListingFee);
emit ListingCapUpdate(newlListingCap);

emit TreasuryUpdate(newTreasury);

3.27 CVF-27
e Severity Minor e Status Opened
e Category Suboptimal e Source Storage.sol

Recommendation A bit mask would be more gas-efficient.

Listing 27:

mapping(uint256 => bool) internal securityCouncilApproves;

3.28 CVF-28
e Severity Minor e Status Opened
e Category Suboptimal e Source Storage.sol

Recommendation This variable would be redundant if a bit mask would be used for 'securi-
tyCouncilApproves’', as it is quite cheap to count “one” bits in a word.

Listing 28:

uint256 internal numberOfApprovalsFromSecurityCouncil;

33

34

36

41

ZkSync

Review ABDK
3.29 CVF-29

e Severity Minor e Status Opened

e Category Suboptimal e Source RegenesisMultisig.sol

Recommendation A bit mask would be more gas-efficient.

Listing 29:
mapping(uint256 => bool) internal securityCouncilApproves;

3.30 CVF-30
e Severity Minor e Status Opened
e Category Suboptimal e Source RegenesisMultisig.sol

Recommendation Using a bit mask for “securityCouncilApproves” would make this unneces-
sary, as it is quite cheap to count “one” bits is a word.

Listing 30:

uint256 internal numberOfApprovalsFromSecurityCouncil;

3.31 CVF-31
e Severity Minor e Status Opened
e Category Bad naming e Source RegenesisMultisig.sol

Description The meaning of this important storage variable is unclear from its name.
Recommendation Consider adding a documentation comment.

Listing 31:

uint256 securityCouncilThreshold;

3.32 CVF-32
e Severity Minor e Status Opened
e Category Flaw e Source RegenesisMultisig.sol

Description There is not range check for the value of the “threshold” argument.
Recommendation Consider checking that it doesn't exceed the total number of security
council members.

Listing 32:
constructor(uint256 threshold) Ownable(msg.sender) {

20

66

90

89

ZkSync

Review ABDK
3.33 CVF-33

e Severity Minor e Status Opened

e Category Unclear behavior e Source RegenesisMultisig.sol

Recommendation This function should emit some event.

Listing 33:

function submitHash(bytes32 oldRootHash, bytes32 newRootHash)
— external {

3.34 CVF-34
e Severity Moderate e Status Opened
e Category Flaw e Source RegenesisMultisig.sol

Recommendation There should be some way to revoke the approval in case some issue was
found after the approval was made.

Listing 34:

function approveHash(bytes32 oldRootHash, bytes32 newRootHash)
— external {

3.35 CVF-35
e Severity Minor e Status Opened
e Category Bad datatype e Source DeployFactory.sol

Recommendation This argument should have type “TokenGovernance”.

Listing 35:

address _finalGovernor

62

ZkSync O
Review ABDK
3.36 CVF-36

e Severity Minor e Status Opened

e Category Suboptimal e Source Events.sol

Description This event is logged when then number of the security council member that
approved cutting the notice period crosses certain thresholds.

Recommendation It would be more logical to emit an even each time a security council
member approves the cut, and have the address of the council member, the current number of
approves, and the current notice period as event parameters. This would tell users how close
the protocol is to cutting the notice period.

Listing 36:

/// @notice Notice period changed
event NoticePeriodChange(uint256 newNoticePeriod);

22

	Document properties
	Introduction
	About ABDK
	Disclaimer
	Methodology

	Detailed Results
	CVF-1
	CVF-2
	CVF-3
	CVF-4
	CVF-5
	CVF-6
	CVF-7
	CVF-8
	CVF-9
	CVF-10
	CVF-11
	CVF-12
	CVF-13
	CVF-14
	CVF-15
	CVF-16
	CVF-17
	CVF-18
	CVF-19
	CVF-20
	CVF-21
	CVF-22
	CVF-23
	CVF-24
	CVF-25
	CVF-26
	CVF-27
	CVF-28
	CVF-29
	CVF-30
	CVF-31
	CVF-32
	CVF-33
	CVF-34
	CVF-35
	CVF-36

