ABDK
CONSULTING

SMART CONTRACT
AUDIT

ZkSync

Solidity

abdk.consulting

SMART CONTRACT AUDIT CONCLUSION

by Mikhail Vladimirov and Dmitry Khovratovich
29th March 2022

We've been asked to review the 19 files in a new version at tag contracts-8. We found 4
major, and a few less important issues.
All identified major issues have been fixed or otherwise addressed in collaboration with the
client. These contracts were deployed:

e Governance

e ZkSync

4 BN Major
B \|oderate
B Minor

[\]

37

https://github.com/matter-labs/zksync-dev/releases/tag/contracts-8
https://etherscan.io/address/0x934ef5836e78d93125317034f5cf855a97b13f43#code
https://etherscan.io/address/0x59a5e7c08be8356193cd9f92ca8ac95c42ab0bdd#code

Findings

CVF-1 Minor Readability Info
CVF-2 Major Flaw Info
CVF-3 Minor Suboptimal Fixed
CVF-4 Minor Suboptimal Info
CVF-5 Minor Procedural Fixed
CVF-6 Minor Suboptimal Info
CVF-7 Moderate Flaw Fixed
CVF-8 Minor Suboptimal Fixed
CVF-9 Minor Bad naming Fixed
CVF-10 Minor Bad naming Fixed
CVF-11 Minor Suboptimal Info
CVF-12 Moderate Bad datatype Info
CVF-13 Minor Procedural Fixed
CVF-14 Minor Procedural Fixed
CVF-15 Minor Procedural Info
CVF-16 Minor Suboptimal Info
CVF-17 Minor Procedural Info
CVF-18 Minor Unclear behavior Fixed
CVF-19 Minor Readability Fixed
CVF-20 Minor Procedural Fixed
CVF-21 Minor Readability Info
CVF-22 Minor Readability Info
CVF-23 Minor Unclear behavior Fixed
CVF-24 Minor Readability Info
CVF-25 Minor Procedural Fixed
CVF-26 Minor Readability Info

CVF-27 Minor Bad datatype Info

CVF-28 Minor Readability Info
CVF-29 Minor Readability Info
CVF-30 Minor Readability Fixed
CVF-31 Minor Flaw Fixed
CVF-32 Minor Unclear behavior Info
CVF-33 Minor Suboptimal Fixed
CVF-34 Major Flaw Fixed
CVF-35 Minor Documentation Fixed
CVF-36 Minor Bad naming Fixed
CVEF-37 Major Flaw Info
CVF-38 Minor Suboptimal Fixed
CVF-39 Minor Procedural Fixed
CVF-40 Minor Bad naming Fixed
CVF-41 Major Suboptimal Info
CVF-42 Minor Suboptimal Info

CVF-43 Minor Suboptimal Info

ZkSync Vv

Review ABDK

Contents

1 Document properties 7

2 Introduction 8
2.1 About ABDK 8
2.2 Disclaimer 9
2.3 Methodology 9

3 Detailed Results 10
3.1 CVE-1 . 10
3.2 CVF-2 . . 11
3.3 CVE-3 . 11
3.4 CVF-4 . 12
35 CVF-5 . o, 12
3.6 CVF-6 13
3.7 CVE-7 13
3.8 CVE-8 . . . 14
3.9 CVE-9 . . 14
3.10 CVF-10 o, 14
3.11 CVE-11 . . o 15
3.12 CVF-12 . . 15
3.13 CVF-13 . . 16
3.14 CVF-14 16
3.15 CVF-15 . . . o, 17
3.16 CVF-16 o, 17
3.17 CVE-17 . . 18
3.18 CVF-18 18
3.19 CVE-19 . . 19
320 CVFE-20, 19
321 CVE-21 . . o, 20
3.22 CVE-22 . 21
3.23 CVF-23 . o, 22
3.24 CVE-24 . . . 22
3.25 CVF-25 . . . o, 23
326 CVF-26 o, 23
3.27 CVE-27 . o, 23
3.28 CVF-28 24
3.29 CVE-29 . . 25
330 CVF-30 . . o 26
331 CVE-31 . o, 26
3.32 CVF-32 . o, 26
3.33 CVF-33 . o, 27
334 CVF-34 27
3.35 CVE-35 . 27
336 CVF-36 o, 28
337 CVE-37 . o, 28

ZkSync Vv

Review ABDK
3.38 CVFE-38 . . . 29
3.39 CVE-39 . . 29
3.40 CVF-40 29
3.41 CVF-41 . . . 30
3.42 CVE-42 . . 30
3.43 CVF-43 . . 31

ZkSync <

Review ABDK

1 Document properties

Version
0.1 March 28, D. Khovratovich Initial Draft
2022
0.2 March 28, D. Khovratovich Minor revision
2022
1.0 March 28, D. Khovratovich Release
2022
1.1 March 29, D. Khovratovich Client comments
2022 update
1.2 March 29, D. Khovratovich Date update
2022
1.3 March 29, D. Khovratovich Listing bug fix
2022
1.4 March 29, D. Khovratovich CVF-17, link
2022 added for
readability
2.0 March 29, D. Khovratovich Release
2022
Contact

D. Khovratovich

khovratovich@gmail.com

ZkSync 7

Review ABDK

2 Introduction

The following document provides the result of the audit performed by ABDK Consulting at
the customer request. The audit goal is a general review of the smart contracts structure,
critical/major bugs detection and issuing the general recommendations.

We have reviewed the contracts at the repository:

e AdditionalZkSync.sol
e Config.sol

e Create2Factory.sol

e DeployFactory.sol

e Events.sol

e Governance.sol

e |[ERC20.s0l

e Operations.sol

e PlonkCore.sol

e Proxy.sol

e ReentrancyGuard.sol
e RegenesisMultisig.sol
e Storage.sol

e TokenGovernance.sol
e UpgradeGatekeeper.sol
e Utils.sol

e Verifier.sol

e ZkSync.sol

e ZkSyncNFTFactory.sol

The fixes were provided in a new pull request.

2.1 About ABDK

ABDK Consulting, established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-authored
some widely known blockchain primitives like Poseidon hash function. The ABDK Audit
Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has conducted over 40 audits of
blockchain projects in Solidity, Rust, Circom, C++, JavaScript, and other languages.

8

https://github.com/matter-labs/zksync-dev/releases/tag/contracts-8
https://github.com/matter-labs/zksync-dev/pull/2156/files
https://abdk.consulting
https://poseidon-hash.info

ZkSync 7

Review ABDK

2.2 Disclaimer

Note that the performed audit represents current best practices and smart contract standards
which are relevant at the date of publication. After fixing the indicated issues the smart
contracts should be re-audited.

2.3 Methodology

The methodology is not a strict formal procedure, but rather a collection of methods and
tactics that combined differently and tuned for every particular project, depending on the
project structure and and used technologies, as well as on what the client is expecting from
the audit. In current audit we use:

e General Code Assessment. The code is reviewed for clarity, consistency, style, and
for whether it follows code best practices applicable to the particular programming lan-
guage used. We check indentation, naming convention, commented code blocks, code
duplication, confusing names, confusing, irrelevant, or missing comments etc. At this
phase we also understand overall code structure.

e Entity Usage Analysis. Usages of various entities defined in the code are analysed.
This includes both: internal usages from other parts of the code as well as potential
external usages. We check that entities are defined in proper places and that their
visibility scopes and access levels are relevant. At this phase we understand overall
system architecture and how different parts of the code are related to each other.

e Access Control Analysis. For those entities, that could be accessed externally, access
control measures are analysed. We check that access control is relevant and is done
properly. At this phase we understand user roles and permissions, as well as what assets
the system ought to protect.

e Code Logic Analysis. The code logic of particular functions is analysed for correctness
and efficiency. We check that code actually does what it is supposed to do, that
algorithms are optimal and correct, and that proper data types are used. We also check
that external libraries used in the code are up to date and relevant to the tasks they solve
in the code. At this phase we also understand data structures used and the purposes
they are used for.

61

70

80

ZkSync <

Review ABDK
3 Detailed Results
3.1 CVF-1

e Severity Minor e Status Info

e Category Readability e Source AdditionalZkSync.sol

Description These changes only affect code formatting.

Recommendation Consider reverting them to reduce the diff size.

Client Comment At some point we updated the lint, this will not affect the diff of subsequent
audits, so now we see no reason to roll it back

—bool proofCorrect =

— verifier . verifyExitProof(
— _storedBlocklInfo.stateHash ,
— _accountld,

- __owner,

— _tokenld,

- __amount,

— _nftCreatorAccountld ,
— _nftCreatorAddress ,

— _nftSerialld ,

— _nftContentHash,

— __proof

_)

+bool proofCorrect = verifier.verifyExitProof(
_storedBlocklInfo.stateHash ,
_accountld,

__owner,

__tokenld

__amount,
_nftCreatorAccountld
_nftCreatorAddress ,
_nftSerialld ,
_nftContentHash ,

__proof

FA+++ A+t

)i
(94, 100)

10

ZkSync <

Review ABDK
3.2 CVF-2

e Severity Major e Status Info

e Category Flaw e Source AdditionalZkSync.sol

Description The conversion to ‘“uintl6” is safe here only because the cur-
rent “MAX FUNGIBLE TOKEN ID" wvalue fits into 16 bits, while the
“MAX_FUNGIBLE TOKEN ID" constant has type “uint32” and thus allows higher
values. Code correctness shouldn't depend on particular values of configuration parameters.
Recommendation Consider removing the conversion and changing the corresponding event
parameter type to “uint32".

Client Comment It's made for consistency, ‘packAddressAndTokenld’, ‘increaseBalance-
ToWithdraw', already used ‘uintl6’ for token ID, it can be changed but with a big legacy
or more inconsistency

91 +emit WithdrawalPending(uintl6(tokenld), owner, amount);

3.3 CVF-3
e Severity Minor e Status Fixed
e Category Suboptimal e Source AdditionalZkSync.sol

Recommendation The function should break from the loop in case the first part of the
conjunction is true, regardless of the second part.
Client Comment -

159 +if (SECURITY COUNCIL MEMBERS[id] = addr && !
— securityCouncilApproves[id]) {

ZkSync <

Review ABDK
3.4 CVF-4

e Severity Minor e Status Info

e Category Suboptimal e Source AdditionalZkSync.sol

Recommendation As member IDs go in sequence starting from zero, a bit mask would be
more efficient than a mapping. Also, using a bit mask would make the “numberOfApprovals-
FromSecurityCouncil” counter redundant, as the number of set bits in a bit mask could be
calculated quite cheaply.

Client Comment Readability is preferable than gas optimisation in function that to be called
only in cases of emergency

160 securityCouncilApproves[id] = true;
3.5 CVF-5
e Severity Minor e Status Fixed
e Category Procedural e Source AdditionalZkSync.sol
Recommendation This check should be performed inside the “recoverAddressFromEthSigna-
ture” function.
Client Comment -
219 + require(recoveredAddress != address(0x00), ""p4"");

< // invalid signature"

229

230

229

230

ZkSync <

Review ABDK
3.6 CVF-6

e Severity Minor e Status Info

e Category Suboptimal e Source AdditionalZkSync.sol

Description Here the same contract is invoked three times.

Recommendation It would be more efficient to implement a function in the gate keeper
contract that returns several addresses at once.

Client Comment lt is totally makes sense, but for do it we should change owner of all proxies
to new upgradeGatekeeper. It can be added in the next upgrades

+(, bytes memory newTarget0) = gatekeeper.staticcall(abi.
< encodeWithSignature (" nextTargets(uint256)", 0));

+(, bytes memory newTargetl) = gatekeeper.staticcall(abi.
— encodeWithSignature (" nextTargets(uint256)", 1));

+(, bytes memory newTarget2) = gatekeeper.staticcall(abi.
< encodeWithSignature (" nextTargets(uint256)", 2));

3.7 CVF-7
e Severity Moderate e Status Fixed
e Category Flaw e Source AdditionalZkSync.sol

Description The execution status of the invocations is ignored, so unsuccessful invocations
are treated as if they returned empty byte strings. It is possible to make an internal contract
invocation unsuccessful by manipulating the transaction gas limit.

Recommendation Consider reverting on unsuccessful invocations.

Client Comment -

+(, bytes memory newTarget0) = gatekeeper.staticcall(abi.
< encodeWithSignature (" nextTargets(uint256)", 0));

+(, bytes memory newTargetl) = gatekeeper.staticcall(abi.
< encodeWithSignature("nextTargets(uint256)", 1));

+(, bytes memory newTarget2) = gatekeeper.staticcall(abi.
— encodeWithSignature (" nextTargets(uint256)", 2));

13

32

33

ZkSync <

Review ABDK
3.8 CVF-8

e Severity Minor e Status Fixed

e Category Suboptimal e Source Config.sol

Recommendation Consider using uint32 type for all token index variables and constants.
Client Comment -

Listing 8:

uintlé internal constant MAX_ AMOUNT_ OF REGISTERED TOKENS = $(
—» MAX_AMOUNT OF REGISTERED TOKENS):

3.9 CVF-9
e Severity Minor e Status Fixed
e Category Bad naming e Source Create2Factory.sol

Description This argument is a bytecode, not a bytecode hash.
Recommendation Consider renaming.
Client Comment -

Listing 9:

+bytes memory bytecodeHash

3.10 CVF-10
e Severity Minor e Status Fixed
e Category Bad naming e Source Create2Factory.sol

Description This variable contains the keccak256 hash of a bytecode, not a hash of a hash
of a bytecode.

Recommendation Consider renaming.

Client Comment -

Listing 10:

36 +bytes32 bytecodeHashHash = keccak256(bytecodeHash);

62

70

19

23

ZkSync <

Review ABDK
3.11 CVF-11

e Severity Minor e Status Info

e Category Suboptimal e Source DeployFactory.sol

Description This change only affects code formatting.

Recommendation Consider reverting it to reduce the diff size.

Client Comment At some point we updated the lint, this will not affect the diff of subsequent
audits, so now we see no reason to roll it back

Listing 11:

—Proxy zkSync =

— new Proxy (

— address(_zksyncTarget),

— abi.encode(address(governance), address(verifier),

<~ address(additionalZkSync), _genesisRoot)

—) ;

+Proxy zkSync = new Proxy(

+ address(zksyncTarget),

+ abi.encode(address(governance), address(verifier), address(
— additionalZkSync), _genesisRoot)

+):
3.12 CVF-12
e Severity Moderate e Status Info
e Category Bad datatype e Source Events.sol

Recommendation The type of the “tokenld” parameter should be “uint32" as token IDs are
32 bits in general. It is true that only a fungible token ID may appear here and a fungible
token ID always fits into 16 bits, but this fact is true only because of the particular value
of a configuration constant, and correctness of the code shouldn't depend on configuration
constant values.

Client Comment It's made for consistency, ‘packAddressAndTokenld’, ‘increaseBalance-
ToWithdraw’, already used ‘uintl6’ for token ID, it can be changed but at the end with a
big legacy

Listing 12:

event Withdrawal(uintl6 indexed tokenld, uintl28 amount);

+event WithdrawalPending (uintl6 indexed tokenld, address
<> recepient, uintl28 amount);

15

23

71

3.13 CVF-13

ZkSync <

Review ABDK

e Severity Minor e Status Fixed
e Category Procedural e Source Events.sol

Recommendation The “recipient” parameter should be indexed.
Client Comment -

Listing 13:

+event WithdrawalPending(uintl6 indexed tokenld, address
<> recepient, uintl28 amount);

3.14 CVF-14
e Severity Minor e Status Fixed
e Category Procedural e Source Events.sol

Recommendation The “addr’ parameter should be indexed.
Client Comment -

Listing 14:

+event ApproveCutUpgradeNoticePeriod(address addr);

41

44

47

53

106

119

160

3.15 CVF-15

ZkSync <

Review ABDK

e Severity Minor e Status Info

e Category Procedural e Source Governance.sol

Recommendation Consider using uint32 type universally for all token index variables.
Client Comment It's made for consistency, ‘packAddressAndTokenld, ‘increaseBalance-
ToWithdraw', already used ‘uint16’ for token ID, it can be changed but at the end with a
big legacy

Listing 15:

uintleé public totalTokens;

mapping(uintl6 => address) public tokenAddresses;
mapping(address => uintl6) public tokenlds;
mapping(uintl6 => bool) public pausedTokens;

uintl6 newTokenld = totalTokens; // it is not ‘totalTokens —
< 1' because tokenld = 0 is reserved for eth

uintl6 tokenld = this.validateTokenAddress(tokenAddr);

uintl6 tokenld = tokenlds|[tokenAddr];

3.16 CVF-16

e Severity Minor e Status Info

e Category Suboptimal e Source Governance.sol

Recommendation It would be cheaper to use the "EXTCODEHASH" opcode here and com-
pare its output with two values: zero and the keccak256 hash of an empty string. See
ERC-1052 for details: https://eips.ethereum.org/EIPS/eip-1052

Client Comment ‘extcodesize’ will be even cheaper, because it has to be compared with only
one value and not with two, and opcodes cost the same

Listing 16:

229 +4contractSize := extcodesize(address)

17

28

69

3.17 CVF-17

ZkSync <

Review ABDK

e Severity Minor e Status Info

e Category Procedural e Source IERC20.sol
Description Why is that done? The resulting methods are not compliant with EIP20.
Client Comment Actually, some ERC20s incorrectly implement the standard, but remain

in use (see the next link). We decided to use interfaces for ‘transfer'/‘'transferFrom" as it is
cheaper due to serialization

Listing 17:

+function transfer(address recipient, uint256 amount) external;

+) external;

3.18 CVF-18
e Severity Minor e Status Fixed
e Category Unclear behavior e Source IERC20.sol

Description The standard is not strict enough to tell for sure what implementations do exactly
match it. The standard allows the “transfer’ and “transferFrom" functions to either revert of
return false un failure and requires them to return true on success. it is unclear whether this
interface allows reverting on unsuccessful transfer attempts or requires an implementation to
explicitly return false.

Recommendation Consider clarifying and/or giving examples of behaviors that are assumed
exactly matching the standard and not exactly matching it.

Client Comment -

Listing 18:

89 +/// Note: It is assumed that the interface applies to those

< ERC20° tokens whose code exactly matches the standard.

90 +/// Note: Used to perform transfers for tokens that explicitly

< return a boolean value

18

https://etherscan.io/token/0xB8c77482e45F1F44dE1745F52C74426C631bDD52#readContract

91

3.19 CVF-19

ZkSync <

Review ABDK

e Severity Minor e Status Fixed

e Category Readability e Source IERC20.sol

Recommendation Should be “will revert” or “will be reverted”.
Client Comment -

Listing 19:

+/// (if the token returns any other data or does not return at

< all, then the function call will reverted)
3.20 CVF-20

e Severity Minor e Status Fixed

e Category Procedural e Source IERC20.sol

Recommendation This interface should be defined in a separate file named “ITrusted Trans-
ferableERC20.sol".
Client Comment -

Listing 20:

92 +interface ITrustedTransfarableERC20 {

984

990

1198

1200

1210

ZkSync v

Review ABDK
3.21 CVF-21

e Severity Minor e Status Info

e Category Readability e Source PlonkCore.sol

Description These changes affect only code formatting.

Recommendation Consider reverting them to reduce the diff size.

Client Comment At some point we updated the lint, this will not affect the diff of subsequent
audits, so now we see no reason to roll it back

Listing 21:

—(uint256 recursive input, PairingsBn254.G1Point[2] memory
< aggregated gls) =
— reconstruct recursive public_input(
— recursive _vks root ,
— max_valid index,
— recursive vks indexes,
— individual vks inputs,
— subproofs limbs
-);
+(uint256 recursive input, PairingsBn254.G1Point[2] memory
< aggregated gls) = reconstruct recursive public_input(
recursive vks root ,
max _valid index,
recursive vks indexes,
individual vks inputs,
subproofs limbs

F+++

)

—bool valid =

— verify recursive(

— proof ,

— vk,

— recursive vks root ,

— max _valid index,

— recursive vks indexes,
— individual vks inputs,
— subproofs limbs

_);

+bool valid = verify recursive(
+ proof ,

+ vk,

+ recursive vks root ,

+ max_valid index,

+ recursive vks indexes,

+ individual vks inputs,

+ subproofs limbs

20

22

65

91

100

ZkSync v

Review ABDK
3.22 CVF-22

e Severity Minor e Status Info

e Category Readability e Source Proxy.sol

Description These changes affect only code formatting.

Recommendation Consider reverting them to reduce code size.

Client Comment At some point we updated the lint, this will not affect the diff of subsequent
audits, so now we see no reason to roll it back

Listing 22:

—(bool initializationSuccess ,) =
— getTarget().delegatecall(abi.encodeWithSignature ("

< initialize (bytes)", targetlnitializationParameters));
+(bool initializationSuccess ,) = getTarget().delegatecall(
+ abi.encodeWithSignature("initialize (bytes)",

— targetlnitializationParameters)
+);

—(bool upgradeSuccess,) =

— getTarget().delegatecall(abi.encodeWithSignature("upgrade(
< bytes)", newTargetUpgradeParameters));

+(bool upgradeSuccess,) = getTarget().delegatecall(

+ abi.encodeWithSignature("upgrade(bytes)",
< newTargetUpgradeParameters)

+):

— case 0 {
— // End execution and revert state changes
— revert (ptr, size)
- }
— default {

// Return data with length of size at pointers
— position

return(ptr, size)

}

case 0 {
// End execution and revert state changes
revert (ptr, size)

}
default {

// Return data with length of size at pointers position
return(ptr, size)

+ 4+ ++ A+

21

55

52

ZkSync <

Review ABDK
3.23 CVF-23

e Severity Minor e Status Fixed

e Category Unclear behavior e Source ReentrancyGuard.sol

Description The fact the some slot is empty doesn't necessary mean that it is not in use, so
this check doesn’t completely eliminates possibility of slot conflict. What this check actually
prevents is possibility for double initialization.

Client Comment -

Listing 23:

+// Check that storage slot for reentrancy guard is empty to
< rule out possibility of slot conflict
+require(lockSlotOldValue = 0, "1B");

3.24 CVF-24
e Severity Minor e Status Info
e Category Readability e Source RegenesisMultisig.sol

Description This change affects only code formatting.

Recommendation Consider reverting it to reduce the diff size.

Client Comment At some point we updated the lint, this will not affect the diff of subsequent
audits, so now we see no reason to roll it back

Listing 24:

—address payable [SECURITY COUNCIL MEMBERS NUMBER] memory
— SECURITY_ COUNCIL MEMBERS =

— [S(SECURITY COUNCIL_ MEMBERS) |

+address payable [SECURITY COUNCIL MEMBERS NUMBER] memory
< SECURITY COUNCIL MEMBERS = |

+ $(SECURITY COUNCIL MEMBERS)

+1];

20

21

3.25 CVF-25

ZkSync <

Review ABDK

e Severity Minor e Status Fixed

e Category Procedural e Source TokenGovernance.sol

Recommendation This event should include the new listing fee amount as a parameter.
Client Comment -

Listing 25:

+event ListingFeeTokenUpdate(ITrustedTransfarableERC20 indexed
< newlistingFeeToken);

3.26 CVF-26
e Severity Minor e Status Info
e Category Readability e Source UpgradeGatekeeper.sol

Description This change only affects code formatting.

Recommendation Consider reverting it to reduce the diff size.

Client Comment At some point we updated the lint, this will not affect the diff of subsequent
audits, so now we see no reason to roll it back

Listing 26:

—enum UpgradeStatus {ldle, NoticePeriod, Preparation}
+enum UpgradeStatus {

+ Idle ,

+ NoticePeriod ,

+ Preparation

+}

3.27 CVF-27
e Severity Minor e Status Info
e Category Bad datatype e Source Utils.sol

Recommendation A “unt256" version would be more useful and probably a bit more efficient.
Client Comment Using one function with "uint256" is a bit uncomfortable, because need to
convert all inputs to ‘uint256°

Listing 27:

58 +function minU128(uint128 a, uintl28 b) internal pure returns (

< uint128) {

69
70

80

90

ZkSync <

Review ABDK
3.28 CVF-28

e Severity Minor e Status Info

e Category Readability e Source Verifier.sol

Description This change only affects code formatting.

Recommendation Consider reverting it to reduce the diff size.

Client Comment At some point we updated the lint, this will not affect the diff of subsequent
audits, so now we see no reason to roll it back

Listing 28:

—bytes32 commitment =

— sha256 (

— abi.encodePacked(

— __rootHash,

— _accountld,

— __owner,

— _tokenld

- __amount,

— _nftCreatorAccountld ,

— _nftCreatorAddress ,

- _nftSerialld ,

— _nftContentHash

-)

—);

+bytes32 commitment = sha256(

abi.encodePacked
_rootHash ,
_accountld,
__owner,
_tokenld,
__amount,
_nftCreatorAccountld ,
_nftCreatorAddress ,
_nftSerialld ,
_nftContentHash

FA++++ A+

24

148

150

161

170

401

ZkSync v

Review ABDK
3.29 CVF-29

e Severity Minor e Status Info

e Category Readability e Source ZkSync.sol

Description These changes only affect code formatting.

Recommendation Consider reverting them to reduce the diff size.

Client Comment At some point we updated the lint, this will not affect the diff of subsequent
audits, so now we see no reason to roll it back

Listing 29:

—(address governanceAddress, address verifierAddress, address
< _additionalZkSync, bytes32 genesisStateHash) =

— abi.decode(initializationParameters , (address, address,
< address, bytes32));

+(

+ address governanceAddress,

+ address _ verifierAddress ,

+ address _ additionalZkSync ,

+ bytes32 genesisStateHash

+) = abi.decode(initializationParameters , (address, address,
— address, bytes32));

—StoredBlocklnfo memory storedBlockZero =

— StoredBlocklnfo (0, 0, EMPTY_ STRING KECCAK, 0,
< genesisStateHash , bytes32(0));

+StoredBlocklnfo memory storedBlockZero = StoredBlocklInfo (

+ 0,

+ 0,

+ EMPTY_STRING KECCAK,

+ 0,

+ _genesisStateHash ,

+ bytes32 (0)

+);

—Operations. FullExit memory op =

— Operations. FullExit ({
— accountld: accountld,
— owner: msg.sender ,
— tokenld: tokenld,
— amount: 0, // unknown at this point
— nftCreatorAccountld: uint32(0), // unknown at this
— point
— nftCreatorAddress: address(0), // unknown at this point
— nftSerialld: uint32(0), // unknown at this point

(..., 410, 441, 486, 675,685,747,855,1001,1057,1110,1151,1247)
25

240

267

3.30 CVF-30

ZkSync <

Review ABDK

e Severity Minor e Status Fixed
e Category Readability e Source ZkSync.sol

Recommendation Should be “if the balance of the contract decreased after transfer’.
Client Comment -

Listing 30:

+require(balanceDiff > 0, "c1"); // transfer is considered
< successful only if the balance of the contract increased
< after transfer

3.31 CVF-31
e Severity Minor e Status Fixed
e Category Flaw e Source ZkSync.sol

Description This is true for the mainnet, while in test networks and Ethereum clones this
statement could be false.

Recommendation Consider using a checked conversion.

Client Comment -

Listing 31:

+// — 1 Ether is 10718 Wei

+// — Total supply of Ether is 118,019,446 (as of December 27,
< 2021)

+// — 27128 > 10°38 > (Total supply of Ether) x 10718

3.32 CVF-32
e Severity Minor e Status Info
e Category Unclear behavior e Source ZkSync.sol

Recommendation This assignment should be performed in the “else” branch of the conditional
statement below. Otherwise ‘tokenld" is assigned with a return value from ‘validate TokenAd-
dress’.

Listing 32:

325 4uintl6 tokenld = 0;

336

355

358

ZkSync <

Review ABDK
3.33 CVF-33

e Severity Minor e Status Fixed

e Category Suboptimal e Source ZkSync.sol

Description The “pendingBalances[pacjedBalanceKe].balanceToWithdraw" value is ponen-
tially updated twice.

Recommendation Consider refactoring the code to update it at most once.

Client Comment -

Listing 33:

+pendingBalances[packedBalanceKey|. balanceToWithdraw = balance —
— amount,;

+ pendingBalances[packedBalanceKey].balanceToWithdraw =
< balance — withdrawnAmount;

3.34 CVF-34
e Severity Major e Status Fixed
e Category Flaw e Source ZkSync.sol

Recommendation The second parameter should be the real withdrawn amount, that could
be different from the “ amount” value.
Client Comment -

Listing 34:

+emit Withdrawal (tokenld , amount);

3.35 CVF-35
e Severity Minor e Status Fixed
e Category Documentation e Source ZkSync.sol

Description This function doesn't seem to actually emit events. Solidity wouldn't allow to
declare it as “view" in case it would emit any events.
Client Comment -

Listing 35:

469 +/// @dev NOTE: does not change storage (only emit events)!

598

661

ZkSync <

Review ABDK
3.36 CVF-36

e Severity Minor e Status Fixed

e Category Bad naming e Source ZkSync.sol

Description The function name is confusing, as it actually increases the pending balance by
the given amount instead of overwriting it.
Client Comment -

Listing 36:

+function storePendingBalance(

3.37 CVF-37
e Severity Major e Status Info
e Category Flaw e Source ZkSync.sol

Description The fact that a fungible token ID always fits into 16 bits is based on the actual
value of a configuration parameter. Code correctness shouldn't depend on particular values of
configuration parameters.

Recommendation Consider using the “uint32" type for token IDs or using “type(uint16).max”
instead of the “"MAX FUNGIBLE TOKEN ID" constant.

Client Comment Using "uint32" can be very inconvenient now because packed
balance mapping needs to be rewritten, and using "type(uintl6).max" instead of
"MAX_ FUNGIBLE TOKEN ID" can be confusing. It can be changed but at the end with
a big legacy. Maybe it is better to leave it as is.

Listing 37:

+handleWithdrawFT(completeWithdrawals, uintl6(op.tokenld), op.
<> owner, op.amount);

667 +handleWithdrawFT(completeWithdrawals, uintl6 (op.tokenld), op.

<> target, op.amount);

672 + handleWithdrawFT (_completeWithdrawals, uintl6(op.tokenld),

<> op.owner, op.amount);

28

ZkSync <

Review ABDK
3.38 CVF-38

e Severity Minor e Status Fixed

e Category Suboptimal e Source ZkSync.sol

Description If the contract is already in exodus mode, the function reverts, while in other
circumstances, that prevent entering exodus mode, the function returns false. It s a bad
practice to combine in a single function different ways of error reporting.

Recommendation Consider returning false (or true) in case exodus mode is already active.
Client Comment -

Listing 38:

782 +requireActive ();

3.39 CVF-39
e Severity Minor e Status Fixed
e Category Procedural e Source ZkSync.sol

Recommendation The check for zero recovered address should be moved to the “recoverAd-
dressFromEthSignature” function.
Client Comment -

Listing 39:

1021 +return recoveredAddress = changePk.owner && recoveredAddress
< |l= address(0);

3.40 CVF-40
e Severity Minor e Status Fixed
e Category Bad naming e Source ZkSyncNFTFactory.sol

Recommendation Constants are usually named IN_UPPER_CASE.
Client Comment -

Listing 40:
17 +bytes constant sha256MultiHash = hex"1220";

ZkSync <

Review ABDK
3.41 CVF-41

e Severity Major e Status Info

e Category Suboptimal e Source ZkSyncNFTFactory.sol

Description Inputs of this function are known to always be 34 bytes long. This allows
significantly optimizing the function by treating the input as an 272-bits integer and converting
it into base58 representation using division and modulo operations. The first few iterations will
require dealing with numbers longer than 256 bits, but such operations are still quite cheap in
ethereum. The vast majority of iterations would deal with numbers that already fit into 256
bits.

Client Comment These functions are ‘pure’ and ‘view' and it's like no one uses onchain in
a transaction, so that such an optimization will only make the code harder to understand

Listing 41:

135 +function toBaseb58(bytes memory source) internal pure returns (
< string memory) {

3.42 CVF-42
e Severity Minor e Status Info
e Category Suboptimal e Source ZkSyncNFTFactory.sol

Description This function copies bytes one by one, which is inefficient.

Recommendation Consider optimizing using the following function that reverses bytes in
a 32-bytes word: function reverseBytes (uint x) public pure returns (uint) { x = x «
128 | x » 128; x = (x & OxFFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF)
« 64 | x » 64 & OxFFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF; x = (x
& O0xFFFFFFFFOO000000FFFFFFFFO0000000FFFFFFFFO0000000FFFFFFFF) « 32 | x »
32 & OxFFFFFFFF00000000FFFFFFFFO0000000FFFFFFFFOO000000FFFFFFFF; x = (x &
OxFFFF0000FFFF0000FFFFO000FFFFOO00FFFFOOO0FFFFOO00FFFFOO00FFFF) « 16 | x »
16 & 0xFFFFOOOOFFFFOOO0FFFFOO00FFFFO000FFFFO000FFFFO000FFFFO000FFFF; return
(x & OxFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFF) « 8
| x » 8 & OxFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFF;
}

Client Comment These functions are ‘pure’ and ‘view' and it's like no one uses onchain in
a transaction, so that such an optimization will only make the code harder to understand

Listing 42:

160 +function reverse(uint8[] memory input) internal pure returns (
— uint8[] memory) {

30

ZkSync v

Review ABDK
3.43 CVF-43

e Severity Minor e Status Info

e Category Suboptimal e Source ZkSyncNFTFactory.sol

Description This function converts bytes one by one which is inefficient.
Recommendation Consider optimizing using the following, that converts 32 bytes
at once: function toAlphabet (uint x) public pure returns (uint) { x += x +
0x54 » 7 &
0x01; x += (x +
Ox5F » 7 &
0x01) * 6; x += x
+ Ox6A0A
» 7 & 0x01; x +=
x + Ox6F6F6F6F6F6F6F6F6F6F6F6FO6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F6FO6FO6FGF »
7 & 0x01; x +=
(X + OXTTI7T77I7T77777I777777777777777777777777777777777777177777177777777 » 7 &
0x01) * 7; return
x + 0x31; }
Client Comment These functions are ‘pure’ and ‘view' and it's like no one uses onchain in
a transaction, so that such an optimization will only make the code harder to understand

Listing 43: _

168 +function toAlphabet(uint8[] memory indices) internal pure
<~ returns (string memory) {

31

	Document properties
	Introduction
	About ABDK
	Disclaimer
	Methodology

	Detailed Results
	CVF-1
	CVF-2
	CVF-3
	CVF-4
	CVF-5
	CVF-6
	CVF-7
	CVF-8
	CVF-9
	CVF-10
	CVF-11
	CVF-12
	CVF-13
	CVF-14
	CVF-15
	CVF-16
	CVF-17
	CVF-18
	CVF-19
	CVF-20
	CVF-21
	CVF-22
	CVF-23
	CVF-24
	CVF-25
	CVF-26
	CVF-27
	CVF-28
	CVF-29
	CVF-30
	CVF-31
	CVF-32
	CVF-33
	CVF-34
	CVF-35
	CVF-36
	CVF-37
	CVF-38
	CVF-39
	CVF-40
	CVF-41
	CVF-42
	CVF-43

